李小伟
政治面貌:中共党员
职 称:教授、博士生导师
职 务:数据科学研究中心主任
所在系所:计算机应用技术研究所
邮 箱:lixwei@lzu.edu.cn
办公地址:飞云楼513
学习经历
(1) 1998/09-2002/07,兰州大学,计算机科学系, 工学学士
(2) 2002/09-2005/07,兰州大学, 计算机科学与技术,工学硕士
(3) 2009/09-2015/06, 兰州大学, 计算机科学与技术,工学博士
工作经历
(1) 2007.04-2013.04 兰州大学信息科学与工程学院 讲师
(2) 2013.05-2018.04 兰州大学信息科学与工程学院 副教授
(3) 2018.05-至今 兰州大学信息科学与工程学院 教授
教学情况
主讲本科生课程: 《Web数据库技术》, 《C语言程序设计》, 《汇编语言》等
指导研究生情况
2014年以来指导硕士研究生15人.
研究方向
研究领域为生物医学数据处理、普适情感计算、机器学习等。当前研究主要为抑郁症患者脑电信号、眼动信号分析处理。
招生专业
计算机科学与技术,计算机应用技术等相关专业.
项目成果
近五年主持或参加科研项目(课题)及人才计划项目情况:
1. 自然科学基金重点项目, 61632014.
2. 国家“973”计划, 2014CB744600.
3. 国家自然科学基金重大项目, 61210010.
4. 科技部国际(地区)合作交流项目, 2013DFA11140.
发表论文及专著
近5年主要的SCI/EI论文如下:
[1] Sun S, Yang P, Chen H, Shao X, Ji S, Li X, Li G and Hu B (2022) Electroconvulsive Therapy-Induced Changes in Functional Brain Network of Major Depressive Disorder Patients: A Longitudinal Resting-State Electroencephalography Study. Front. Hum. Neurosci. 16:852657. doi: 10.3389/fnhum.2022.852657(通讯作者)
[2] S. Sun, L. Liu, X. Shao, C. Yan, X. Li and B. Hu, “Abnormal Brain Topological Structure of Mild Depression During Visual Search Processing Based on EEG Signals,” in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 1705-1715, 2022, doi: 10.1109/TNSRE.2022.3181690. (通讯作者)
[3] J. Zhu et al., “Mutual Information Based Fusion Model (MIBFM): Mild Depression Recognition Using EEG and Pupil Area Signals,” in IEEE Transactions on Affective Computing, doi: 10.1109/TAFFC.2022.3171782. (通讯作者)
[4] Jianxiu Li; Junhao Chen; Wenwen Kong; Xiaowei Li; Bin Hu ; Abnormal core functional connectivity on the pathology of MDD and antidepressant treatment: a systematic review, Journal of Affective Disorders, 2022, 296: 622-634(通讯作者)
[5] H. Chen et al., “Personal-Zscore: Eliminating Individual Difference for EEG-based Cross-Subject Emotion Recognition,” in IEEE Transactions on Affective Computing, doi: 10.1109/TAFFC.2021.3137857. (通讯作者)
[6] J. Li et al., “Altered Brain Dynamics and Their Ability for Major Depression Detection using EEG Microstates Analysis,” in IEEE Transactions on Affective Computing, doi: 10.1109/TAFFC.2021.3139104. (通讯作者)
[7] Li J , Hao Y , Zhang W , et al. Effective connectivity based EEG revealing the inhibitory deficits for distracting stimuli in major depression disorders[J]. IEEE Transactions on Affective Computing, 2021, PP(99):1-1. (通讯作者)
[8] Shao,X.,et al.,Analysis of Functional Brain Network in MDD based on Improved Empirical Mode Decomposition with Resting State EEG Data. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2021:p.1-1. (通讯作者)
[9] Zhu, J. , Wang, Z. , Gong, T. , Zeng, S. , & Zhang, L. . (2020). An improved classification model for depression detection using eeg and eyetracking data. IEEE Transactions on NanoBioence, PP(99), 1-1.(通讯作者)
[10] Li X, La R, Wang Y, Hu B and Zhang X (2020) A Deep Learning Approach for Mild Depression Recognition Based on Functional Connectivity Using Electroencephalography. Front. Neurosci. 14:192. doi: 10.3389/fnins.2020.00192